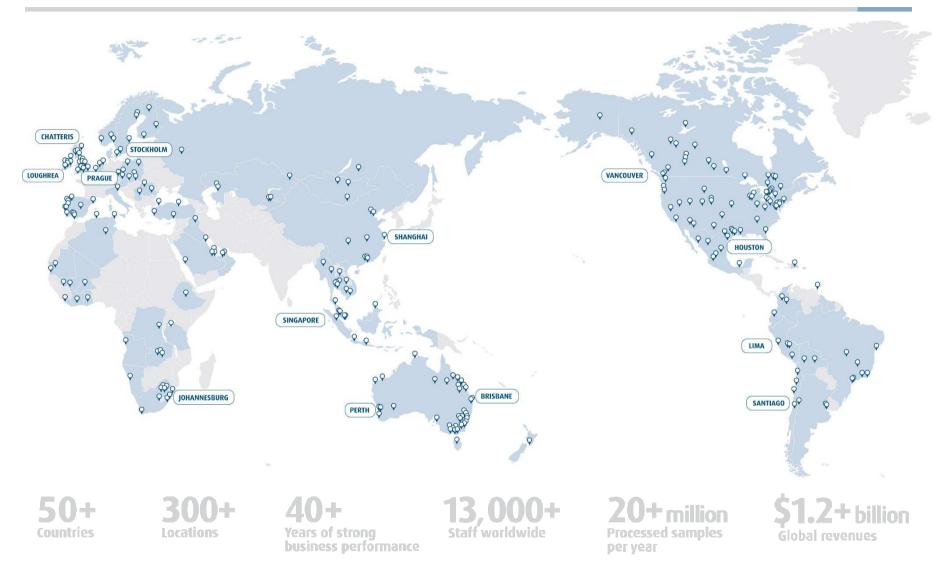


Exploring the advantages automated sample preparation and High Sensitivity GC/MS for SVOC & Pesticide analysis in environmental waters

John Quick – ALS Environmental UK


5TH SBSE INTERNATIONAL MEETING 23 & 24 SEPTEMBRE 2019 - NOVOTEL PARIS-SUD

SBSE

Global locations

ALS Environmental - Europe

- Historically based in Eastern Europe & Nordic Region
- Central hub in Prague, Czechia
- Purchased Severn Trent Laboratories in 2013
- Purchased ALcontrol UK businesses in 2016
- UK laboratory sites:
 - Coventry Wastewater
 - Wakefield Potable water
 - Hawarden Contaminated Land
 - Otterbourne Potable Microbiology

ALS – Background

- ALS Environmental
 - Busy, high throughput commercial environment
 - Efficient, robust methods required
- 2015 Set of low level methods developed to meet requirements of Chemical Investigation Program (CIP) – part of UK response to the Water Framework Directive (WFD)
 - Ultra-trace level work low pg/L levels for some compounds
 - Investment in modern instrumentation
 - First automated sample preparation method introduced
- 2016/2017 CIP methods extended to fully cover WFD suite and matrices
 - Accredited to 17025
 - Now routine
- 2018/2019 Focus is to apply knowledge gained from CIP/WFD methods to improve efficiency of routine methods
 - A major part of this is a drive to automate sample preparation methods.

Overview - Automated Sample preparation for Organics

- Introduction
 - What developments have made automation possible?
 - Why automate what are the benefits?
- Case Studies
 - Alkylphenols & Ethoxylates
 - » For CIP/WFD. Hexane extraction and analysis by GC-MSMS in NCI.
 - » Now in routine use for 3 years. Proven robustness.
 - SVOCs/Pesticides
 - » Using Dispersive Liquid/Liquid Microextraction (DLLME)
 - » Currently under development, initial results are very promising wide range of analytes covered and is very fast!
 - Ultra low level Heptachlors by SPE followed by SBSE and GC-TOF-NCI
 - » SPE of 1 litre sample, extract dilution then SBSE with detection by GC-TOF-NCI
 - » Proof of concept only. Indications are LODs of <1 pg/L may be achievable.
- Conclusions

Instrumental Advances

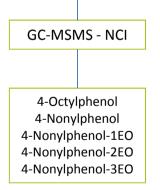
- Mass Spectrometry
 - Big improvements in recent years sensitivity & selectivity
 - GC–MSMS now routine
 - Agilent HES for 5977B MSD and 7010 GC-MSMS
 - GC-TOF
 - Lower concentration factors required enables miniaturisation which in turn facilitates automation
 - Nearly all routine methods (MRLs low ng/L) can now be done with sample volumes of 40mls or less.
- Instrument top automation
 - Gerstel MPS "Lab on a rail" LLE, SPE, Mixers, Shakers centrifuges etc
- Major improvements in methodologies possible by bringing the above together.

Benefits of Miniaturisation / Automation

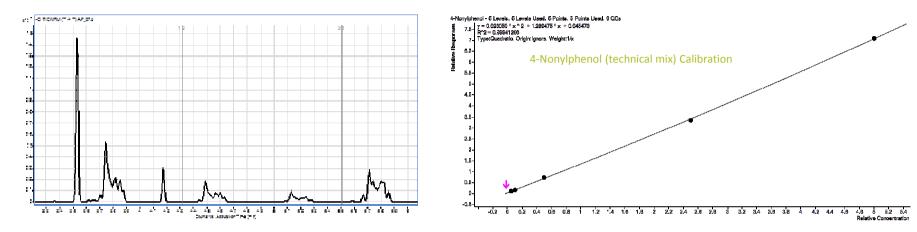
- Lower Sample volumes (40mls or less)
 - Reduced sampling, transportation & storage costs
- Analytical cost savings
 - Labour
 - Solvents & other consumables
- Data Quality
 - Improved reproducibility
 - Blank control
- Health & Safety
 - Reduced exposure to solvents & other chemicals

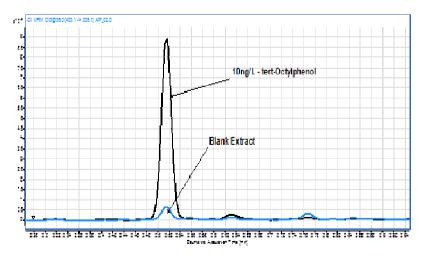
Alkylphenols & Ethoxylates

Automated Extraction and Analysis


- Method set up for CIP in 2015
- 4-Octylphenol, 4-Nonylphenol & 4-Nonylphenol EO1 EO3
- Analysis by GC-MSMS in NCI mode.
- Simultaneous extraction and derivatisation using Hexane/Pentafluorobenzoyl Chloride.
- Sensitivity of NCI allows process to be miniaturised.
- Fully automated method developed with help from Anatune.
 - Gerstel MPS system
 - Addition of Internal standards
 - LLE / Derivatisation mVorx
 - Emulsion break
 - Injection onto GC-MSMS
- Method then extended for WFD and re-validated in 2017
 - Centrifuge required to break emulsion for saline samples

Sample taken in 250ml Glass bottle


- Add NaOH and sub-sample 5.5mls into 10ml vial
- Automated LLE/PFBCl derivatisation performed on Gerstel MPS sampler.
- Sample vials are thermally cleaned to reduce blanks
- Centrifugation step required to break emulsion for saline samples

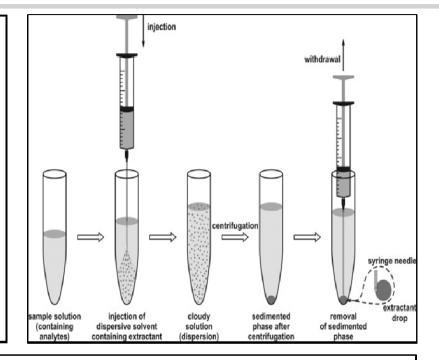

Alkylphenols & Ethoxylates – GC–MSMS Agilent 7000C (NCI)

4-tert-OP Sensitivity in Sewage Effluent

ANALYTE	4-Octylphenol	4-Nonylphenol	4-Nonylphenol - 1EO	4-Nonylphenol - 2EO	4-Nonylphenol - 3EO
UNITS	ug/L	ug/L	ug/L	ug/L	ug/L
Method LOD	0.0043	0.021	0.026	0.029	0.031
Method MRL	0.010	0.040	0.040	0.040	0.040
EFFLUENT					
Spike Recovery	105.6%	103.4%	98.5%	97.5%	101.5%
Spike RSD	6.97%	4.36%	7.38%	8.00%	7.57%
Uncertainty	19.6%	12.1%	16.3%	18.5%	16.7%
RIVERINE					
Spike Recovery	105.5%	102.3%	95.5%	95.0%	102.7%
Spike RSD	6.66%	3.57%	10.36%	8.68%	6.46%
Uncertainty	18.8%	9.4%	25.3%	22.4%	15.7%

Alkylphenols – Conclusions

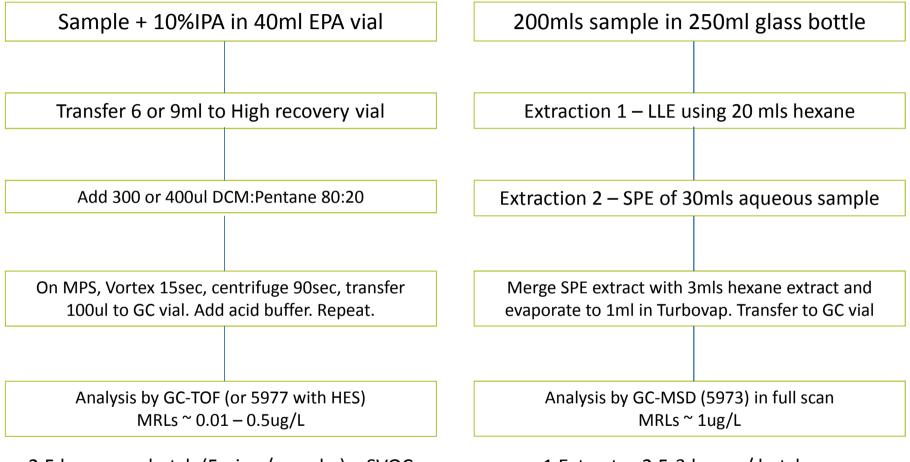
- Method set up in 2015 and the automation has proved robust and reliable.
- Due to high sensitivity of NCI GC-MSMS only a small concentration factor required to meet MRLs in the low-mid ng/L range.
- Method extended in 2017 as part of laboratory project to cover all WFD core determinands and matrices.
- Due to severe emulsion formation for saline samples a centrifugation step was found to be necessary. This was both effective at clearing the emulsion and proved mechanically reliable.
- Current focus of the laboratory is on applying knowledge gained from development of the ultra trace CIP/WFD methods to improve efficiency of routine methods.
- Is it possible to take the work done for alkylphenols and extend it to:
 - Increase the concentration the factor
 - Increase the range of analytes covered
 - Improve the speed of analysis
- Is DLLME a viable option?


SVOCs and Pesticides

Possible method by Dispersive Liquid/Liquid Microextraction (DLLME)

DLLME – Introduction

- Aqueous sample mixed with a dispersive solvent and an extraction solvent
- Dispersive solvent miscible with sample and extraction solvent (Alcohol or MeCN)
- Extraction solvent usually denser than water (e.g DCM)
- After mixing sample is centrifuged to sediment the extraction solvent at the bottom of the vessel.
- Extract then removed with syringe for analysis.

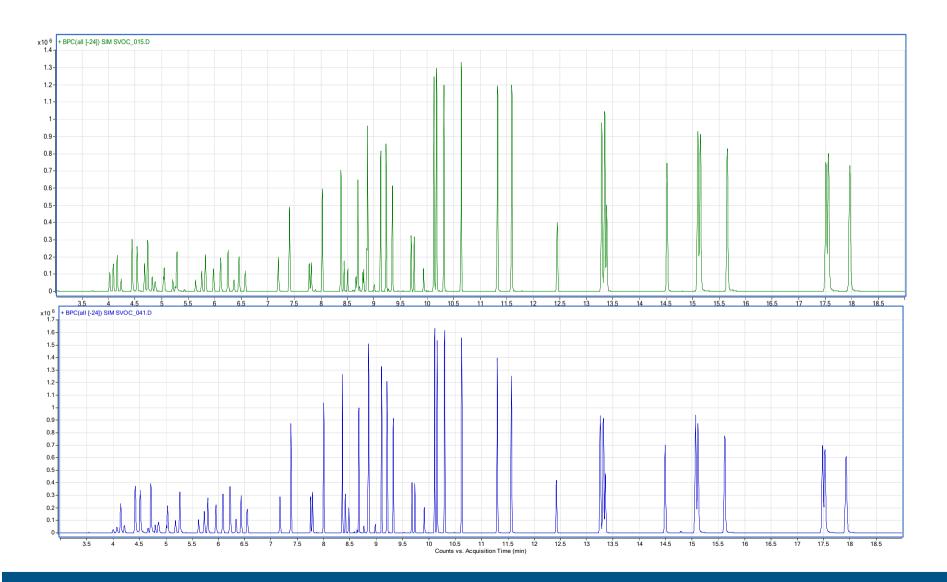

- Significant concentration factor from small volume of sample.
- It is very fast (equilibrium reached in seconds)
- Wide range of amenable target analytes.
- Low usage of solvents and other consumables
- When extracts analysed using modern sensitive instruments low LODs are possible from small sample size.
- Automatable!!

- What range of analytes can be extracted by a DCM based DLLME method?
 - Does the presence of the disperser solvent significantly affect the recovery of polar analytes?
- What concentration factors can be achieved?
- How reproducible is the method?
- Matrix effects?
- How robust is the automation?
- Throughput samples/day?
- What MRLs are achievable when interfaced to modern instrumentation (with LVI?)
 - Agilent 5977MSD
 - Leco BT
 - Agilent 7200 QTOF

Automated DLLME Procedure

2.5 hours per batch (5mins /sample) – SVOC 1.25 hours per batch (2.5mins/sample) – others 100 Samples/day 1 Extractor 2.5-3 hours / batch Max 50 samples / day

Gerstel MPS


DLLME Extraction on Gerstel MPS Settings

	epBuilder 1 - C:\Program	Data\Gerstel\M	aestro\1\PrepSequence\DLLME_6_SVOC.prp			
Auto Station Server Total Station Server Total Station<			1			
Image:						
<pre>v v v v v v v v v v v v v v v v v v v</pre>	ep. Action Settings		Syringe: 100ul			
	Agtion PREP	170	MPS Left MPS			
Serve Image: Image	Method No Overlap -	Prep Ahead disal	bled 💌	New Delete		
Sores U V/I Generation V/I V/I Control V/III V/IIII Control V/IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						
Description No minute 0 control No control 0 control No co	6					
A BUR DE DEBUGE	Source	Y				
Kriston Media Survia Nual Description Material Nual FEEF Value 16 No. Roy MES No. Control No. Contro No. Contro No. Co	Destination	v	Vial AUTO			
PREF Val. 16 No Amelia Tomo V12:00 Movement	♣ Add Bro Inser	t 🌔 🗘 🖁 🔤 🔤	lace 🗶 Delete			
	liction	MPS	Method / Value	Source Vial	Destination Vial	
Of More More Hore Hore Hore Hore More More More More More Hore Hore Hore Hore Hore Hore Hore H			No Overlap	T 01770.40		
• Mo/ic Rgt MPS mloog m/TC1.10 Tmg2/T22.10 FMD Roberting Robering Robering </td <td></td> <td></td> <td>mVorx DLLME</td> <td>Tray2,VT32-10</td> <td>mVorx,mVTC1-10</td> <td></td>			mVorx DLLME	Tray2,VT32-10	mVorx,mVTC1-10	
PREP No. Poweles Tray 2/173-10 Cerefg.CT6-10 + NVC Lek M25 400-es 56 - RVD - RVD - RVD - RVD Lek M25 400-es 56 - RVD - RVD - RVD - RVD Lek M25 - RVD - RVD - RVD - RVD - RVD Lek M25 - RVD - RVD - RVD - RVD - RVD	MOVE	Right MPS		mVorx,mVTC1-10	Tray2,VT32-10	
M KNR Let MPS Tmy2/T32-10 Cendig:CT60 T PREP Vals 1-1 No Ovelop No <			No Constant			
→ N0 → RFP Val. 1: ● N0 No Overlap → MVF Lek MPS → MVF Lek MS → MVF Lek MS → MVF No Overlap → MVF Lek MS → MVF No Overlap → MVF Lek MS → MVF No Overlap → REP Vals 1:6 No Overlap → RO Teg/VT32:10 → RO Teg/VT32:10 → N0 NO		Left MPS	No Overlap	Tray2,VT32-10	Centrifg.CT6-10	
Bit Protein No Overlap MEP Mak PS MEP Mak PS MEP Mak PS MEP Mak PS MEP No Overlap MEP No Overlap Mex Mak PS Mak PS Mex Mak PS No Overlap Mex Mak PS No LME_Edens_Tandre* Tray2/T32-10 Tray1/T38	- END			2010 • C.A. (2010)		
L D0 ■ RFP Val 1 f No Overlap ■ RFP Val 1 f No Val 1 f ■ RFP Val 1 f No Val 1 f ■ RFP Val 1 f No Val 1 f ■ RFP Val 1 f No Val 1 f ■ RFP Val 1 f No Val 1 f ■ RFP Val 1 f No Val 1 f ■ RFP Val 1 f No Val 1 f ■ RFP Val 1 f	PREP Vials 1-1	Left MPS				
OKONC Let MPS Centra CITE-10 Tray2VT32-10 PREP Vals 1-1 No Ovelap No	- END	Doit Mil D				
END ■ MSV His Lat MS Wah, DCM ■ NO ■ PEP Vals 1-5 NO-velag		L-A MDC	No Overlap	Cratify CTC 10	T1/(722.10	
PREP Muls 1-1 No.Ovedp WXSH Lett MPS Wash_L No.Ovedp PRD No.Ovedp # ADD Lett MPS DLME_Extract_Transfer Tmy1/VT88 END No.Ovedp NO Lett MPS DLME_Extract_Transfer Tmy1/VT88 END No.Ovedp OK Cancel		LEILMED		Centing,C10-10	11dy2, ¥132-10	
► NO ● PREP Vals 16 No Ovelop ● ADD Left MPS DLLME_Edead_Transfer Tray1.VT38						
PREPrint No Owelsp ADO Left MPS DLLME_Edence_Transfer Tray1.VT38		Left MPS	Wash_DCM			
	PREP Vials 1-6					
OK Carcel	ADD END	Left MPS	DLLME_Extract_Transfer	Tray2,VT32-10	Tray1.VT98	
						OK Cancel
		0	👿 📑 🍈 🔼			- 陳 翰

Comparison of SVOC AQC Spikes on 5975MSD Top trace current method, bottom trace DLLME

2-Chloronaphthalene on 5975MSD in sim\scan DLLME of 9ml sample & 2ul injection

-		Library Rep			_															
	alyze Batch 🝷 🔞	Layout:		8 💷 🛆 🖸	Restore D	Default	Layout													
latch Table																	-			
Sample: 👔 1 STD DLLME	-	👢 Sam	ple Type: 🔻	<all></all>		• C	ompound: 🛛	2-Chloron	aphthalene	-	📑 IST	D: d10-	Acenapht	nene	₫			1	💙 😒	🕈 🌾
Compound Group: <all></all>	▼ Sam	ple Group: <	All>	▼ ISTD: <	All>	-	Time Segm	ent: <all></all>	-								,			
	Sample				2-Chloron		2-C	hloronaphthale	ne Results		Qualifi	e d10	Ace Qu	lifie						
() 🕅 Name	Data File	Туре	Level	Acq. Date-Time	Exp. Conc.	RT	Resp. MI	Calc. Conc.	Final Conc. Ad	curacy S/	N Ratio	MI RT	Resp. Rat	io MI						
0 STD DLLME	SVOC_035.D \$	Sample		02/2018 08:04		8	54	0.0044	0.0044	8		8	113 40							
1 STD DLLME	-	Sample		02/2018 08:29		8	16116	1.1880	1.1880	9		8	125 40							
5 STD DLLME		Sample	01/	02/2018 08:54		8	74694	5.7639	5.7639	5		8	118 40							
25 STD DLLME		Sample	01/0	02/2018 09:19		8	369516	27.6482	27.6482	2		8	114 40	3						
50 STD DLLME	SVOC_039.D \$	Sample	01/(02/2018 09:43		8	762480	48.0376	48.0376	5		8	128 40							
0 🔻 100 STD DLLME	-	Sample		02/2018 10:08		8	1872949	100.2445	100.2445	4		8	133 40							
DLLME T AQC 1		Sample		02/2018 14:43		8	969670	55.4453	55.4453	2		8	139 40							
DLLME T AQC 2	SVOC_042.D	Sample	01/0	02/2018 15:08		8	990937	52.7008	52.7008	2		8	150 40	1						
mpound Information								🕶 🗙 Calibr	ation Curve											,
·			lt 🔔	" 1 л I	d ta de	≛ 4	A ." £		7	·	🔿 T)	rpe: Qu	adratic	▼ Orig	gin: Force	2 • 1	Weight:	None	- ISTE	
	_		+ Selecte	ed Ion (127.0) SVC	C_036.D	<u>*</u> ,	A .°. €	t] ↔ ‡ 🤅 oronaphthalene	- 5 Levels	, 5 Levels	Used, 5			·	2 🔹	Weight:	None	- ISTE	
	D		+ Selecte	ed Ion (127.0) SVC	C_036.D	<u>ג</u>	A	₹	oronaphthalene	- 5 Levels 659 * x ^ 2	, 5 Levels	Used, 5			·	e v 1	Weight:	None	• ISTE	
	_		+ Selecte	ed Ion (127.0) SVC	C_036.D	▲ _	A .°. £	₹		- 5 Levels 659 * x ^ 2 9850350	, 5 Levels + 5.3926	Used, 5 93 * x	Points, 5 F		·	• • \	Weight:	None	• ISTC	
Image: wide wide wide wide wide wide wide wide	D		+ Selecte	-	C_036.D	▲ _	A	₹		- 5 Levels 659 * x ^ 2	, 5 Levels + 5.3926	Used, 5 93 * x	Points, 5 F		·	e v 1	Weight:	None	• ISTC	
Image: wide wide wide wide wide wide wide wide	D		+ Selecte \$2 x10 ³ 0 6 4 2	ed Ion (127.0) SVC 3- Ratio = 35.5 (10 3- 1- 2-	C_036.D	▲ _	A£	₹	→ ↓ →	- 5 Levels 659 * x ^ 2 9850350	, 5 Levels + 5.3926	Used, 5 93 * x	Points, 5 F		·	2 • 1	Weight:	None	• ISTC	
Image: wide wide wide wide wide wide wide wide	D	Alt+Up)	+ Selecte 원 x10 ³ 0 6 4	ed Ion (127.0) SVO Ratio = 35.5 (10	IC_036.D 0.4 %) 8.03	6 min.		₹	→ ↓ →	- 5 Levels 659 * x ^ 2 9850350	, 5 Levels + 5.3926	Used, 5 93 * x	Points, 5 F		·	= • 1	Weight:	None	• ISTC	
Image: wide wide wide wide wide wide wide wide	D Previous Sample (/	Alt+Up) 8.15	+ Selecte	ed Ion (127.0) SVO Ratio = 35.5 (10	C_036.D	8.05	8.1 8.15	× 2. School and the Relative Responses	→ ↓ →	- 5 Levels 659 * x ^ 2 9850350	, 5 Levels + 5.3926	Used, 5 93 * x	Points, 5 F		·	2 • 1	Weight:	None	• ISTE	
Selected Ion (162.0) SVOC_036. ×10.4 1.5- 1- 0.5- 0- 7.9 7.95	D Previous Sample (/ 8 8.05 8.1 Acquisit	Alt+Up)	+ Selecte x10 ³ 6 4 2 0 1	ed Ion (127.0) SVC Ratio = 35.5 (10 	C_036.D 0.4 %) 8.03 95 8	8.05		2-Chil Selative Responses time (min)		- 5 Levels 659 * x ^ 2 9850350	, 5 Levels + 5.3926	Used, 5 93 * x	Points, 5 F		·	: •)	Weight:	None	• ISTE	
Image: Weight of the state of the	D Previous Sample (/ 8 8.05 8.1 Acquisit	Alt+Up) 8.15	+ Selecte	ed Ion (127.0) SVC 	IC_036.D 0.4 %) 8.03 95 8 IC_036.D	8.05	8.1 8.15	2-Chlu 2-Chlu Segonases Herative Responses		- 5 Levels 659 * x ^ 2 9850350	, 5 Levels + 5.3926	Used, 5 93 * x	Points, 5 F		·	: •)	Weight:	None	• ISTC	
Image: Weight of the state of the	D Previous Sample (/ 8 8.05 8.1 Acquisit	Alt+Up) 8.15	+ Selecte	ed Ion (127.0) SVC 	C_036.D 0.4 %) 8.03 95 8 C_036.D 0.0 %)	8.05 Acc	8.1 8.15	2-Chlu 2-Chlu Segonases Herative Responses		- 5 Levels 659 * x ^ 2 9850350	, 5 Levels + 5.3926	Used, 5 93 * x	Points, 5 F		·	• • 1	Weight:	None	• ISTC	
Image: Weight of the state of the	D Previous Sample (/ 8 8.05 8.1 Acquisit	Alt+Up) 8.15	+ Selecte x10 ³ 6 4 2 0 1	ed Ion (127.0) SVC 	IC_036.D 0.4 %) 8.03 95 8 IC_036.D	8.05 Acc	8.1 8.15	2-Chi 2-Chi Sestourses Relative Responses		- 5 Levels 659 * x ^ 2 9850350	, 5 Levels + 5.3926	Used, 5 93 * x	Points, 5 F		·	• • 1	Weight:	None	• ISTE	
Image: Weight of the state of the	D Previous Sample (/ 8 8.05 8.1 Acquisit	Alt+Up) 8.15	+ Selecte \$2 x103 6 4 2 0 + Selecte \$2 x104 0 + Selecte \$2 x103 6 4 2 0 4 2 0 4 4 2 0 4 4 2 0 6 4 4 2 0 6 6 6 6 6 6 6 6 6 6 6 6 6	ed Ion (127.0) SVC Ratio = 35.5 (10 	C_036.D 0.4 %) 8.03 95 8 C_036.D 0.0 %)	8.05 Acc	8.1 8.15	2-Chi 2-Chi Sestourses Relative Responses		- 5 Levels 659 * x ^ 2 9850350	, 5 Levels + 5.3926	Used, 5 93 * x	Points, 5 F		·	2 • 1	Weight:	None	• ISTE	
Image: Weight of the state of the	D Previous Sample (/ 8 8.05 8.1 Acquisit	Alt+Up) 8.15	+ Selecte \$\frac{1}{2} x10^3 6 4 2 0 + Selecte \$\frac{1}{2} x10^4 0 + Selecte \$\frac{1}{2} x10^4 + Sele	ed lon (127.0) SVC Ratio = 35.5 (10 	C_036.D 0.4 %) 8.03 95 8 C_036.D 0.0 %)	8.05 Acc	8.1 8.15	2-Chi 2-Chi Sestourses Relative Responses		- 5 Levels 659 * x ^ 2 9850350	, 5 Levels + 5.3926	Used, 5 93 * x	Points, 5 F		·	2 • 1	Weight:	None	• ISTE	
	D Previous Sample (. Previous Sample (. 8 8.05 8.1 Acquisit D 8.668 min. 8.65 8.7 8.75	Alt+Up)	+ Selecte	ed lon (127.0) SVC Ratio = 35.5 (10 7.9 7 ed lon (160.0) SVC Ratio = 40.3 (10 2- 	C_036.D 0.4 %) 8.03 95 8 C_036.D 0.0 %)	8.05 Acc min.	8.1 8.15	2-Chlissuodsaa	↔	- 5 Levels 659 * x ^ 2 9850350	, 5 Levels + 5.3926 gin:Force	Used, 5 93 * x	Points, 5 P		0 QCs	• • • •		None	1.8 1.5	
	D Previous Sample (. Previous Sample (. 8 8.05 8.1 Acquisit D 8.668 min. 8.65 8.7 8.75	Alt+Up)	+ Selecte	ed lon (127.0) SVC Ratio = 35.5 (10 7.9 7 ed lon (160.0) SVC Ratio = 40.3 (10 2- 	C_036.D 0.4 %) 8.03 95 8 C_036.D 0.0 %) 8.668 r	8.05 Acc min.	8.1 8.15 uuisition Time 8.75 8.8	2-Chlissuodsaa		- 5 Levels 659 * x ^ 2 9850350 ddratic, Ori	, 5 Levels + 5.3926 gin:Force	Used, 5 93 * x , Weight	Points, 5 P	Points Used,	0 QCs		4 1.5	1.6 1.7	T. T. 1.8 1.9 Relative	QC QC 2 2 Concentr

2-Chloronaphthalene on 5977B HES in full scan DLLME of 9ml sample & 1ul injection

🛛 Agilent MassHunter Quanti	tative Analysis (for GCMS)) - 180116A -	- 180116B.	batch.bin												-	٥	×
File Edit View Analyze N	Aethod Update Library	Report To	ools Help)														
🛅 🗁 🛃 🗈 💭 An	alyze Batch 🔻 🔞 🛛 La	iyout: 🔣		🔲 🛕 📝 Rest	ore Default Lay	out												
Batch Table																		- - X
Sample: 👔 0.5ugl	- ₹	Sample Typ	e: <all></all>		▼ Com	pound:	🔄 2-Chl	oronaphthal	ene 🔹	🖌 📑 IST	D: d10-A	cenapther	ne	i∎i		🛛 🙀 🔯	1 🚩 树	7
Compound Group: <all></all>	▼ Sample Gro	up: <all></all>		✓ ISTD: <aii></aii>	▼ Ti	ime Seg	ment: <all< td=""><td>> -</td><td></td><td></td><td></td><td></td><td>11</td><td></td><td></td><td> </td><td></td><td></td></all<>	> -					11					
	Sample				2-Chloron	_		2-Chloronap	nthalene Result	s		Qualifie	d10-Acenapthe	e				-
⑦ ♥ Name	Data File	Туре	Level	Acq. Date-Time	Exp. Conc.	RT	Resp.	MI Calc. Cor	c. Final Conc.	Accuracy	S/N	Ratio MI	RT Resp	_				
-	0.5 STD 180116.D	Cal	0.5	16/01/2018 16:42	0.5000		155133				572.00	1.9	10.5 58571					1
Automatic	2 STD 180116.D	Cal	2.0	16/01/2018 17:09	2.0000		652170				2780.87	2.1	10.5 61036					
	5 STD 180116.D	Cal	5.0	16/01/2018 17:36	5.0000		1599042	4.74			2840.61	2.2	10.5 63513					
	10 STD 180116.D	Cal	10.0	16/01/2018 18:02	10.0000		3679855	10.22			5570.22	2.3	10.5 70528					
	20 STD 180116.D	Cal	20.0	16/01/2018 18:29	20.0000		7014763	19.95			13371	2.8	10.5 74127					
-	2 STD 15sec A 180116.D	Sample		16/01/2018 21:34		9.946	789749	2.01			983.41	2.4	10.5 72409					
	2 STD 15sec B 180116.D 2 STD 30sec A 180116.D	Sample		16/01/2018 22:01 16/01/2018 22:27		9.946 9.946	789064	2.03			1548.15 1566.62	2.1	10.5 71850 10.5 71462					
	2 STD 30sec A 180116.D	Sample Sample		16/01/2018 22:27	_	9.946	805665	2.01			1779.71	2.2	10.5 71462					
	2 STD 45sec A 180116.D	Sample		16/01/2018 23:20		9.942	815600	_			1349.28	2.2	10.5 73431					
	2 STD 45sec B 180116.D	Sample		16/01/2018 23:47		9.946	827394	2.03			1592.67	22	10.5 73700					
-	2 STD 60sec A 180116.D	Sample		17/01/2018 00:13		9.942	869479				1365.52	1.8	10.5 76032					
ompound Information							- × 0	alibration Cu	7/8									-
		Т П 😤			<u>* * *</u>	» •		A Station Co	: 🛪 • 🔄] 💽 Ту	rpe: Quad	Iratic	▼ Origin: I	orce	- Weight	None 🔻	ISTD	
EIC (127.0) Scan 0.5 STD 1801 10.5 0.5 0.5 0.5 9.7 9.8	16.D 9.946 min. 9.9 10 10.1 Acquisition Tim	× Relative Abu		io = 1.9 (68,3 %)		10.1 ition Tin		8 1-y= 2 00 R℃	halene - 5 Leve -0.037242 * x ^ 2 = 0.99948017 ve:Quadratic, O	2 + 0.5485	528*x		ints Used, 0 QC	s				-
EIC (164.0) Scan 0.5 STD 1801		164.	0					0.4 -										
2 x10 ⁶ 4- 2- 0-	10.551 min.	Relative Abu x	10 ² - 0.75- 0.5- 0.25- 0-		\bigwedge			0.3- 0.2- 0.1- 0-	*	•	-							
10.3 10.4 1	0.5 10.6 10.7 Acquisition Tim	10.8 e (min)	10	.3 10.4 10.5	5 10.6 Acquis	10.7 ition Tin	10.8 ne (min)	-	0.1 0 0.1	0.2 0.3 (0.4 0.5	0.6 0.7	0.8 0.9 1 1	.1 1.2 1.3	3 1.4 1.5	1.6 1.7 1 R	.8 1.9 elative Cor	2 2.1 icentrati
												Pro	cessed 0.5	iugl	2-Chloron	aphthalene	13 Samples	s (13 tota
Type here to	search		₽ (C	נ 🔁 🧮	💼 🔕	e	0	x 🗄 🛛 w	A	5	ds 🙀	v V		•	a 🧕 🥠	토 🖤 _2	17:06 5/02/2018	\Box

2-Nitroaniline on 5977B HES in full scan DLLME of 9ml sample & 1ul injection

	🔒 🖬 💭	Analyze Batch 🖌 🔞 🛛 La	ayout: 🔙		📕 🛕 📝 Restor	re Default Lay	out											
Table																_		
nple:	10.5ugl	-	Sample Typ	e: <all></all>		▼ Comp	pound:	🔄 2-Nitro	paniline		istd:	d10-Ace	napthen	e	i ↓∎ 🗉	M 🛛	🖗 🌪 🌪	🤊 🏹
mpou	nd Group: <all></all>	▼ Sample Gro	oup: <all></all>		▼ ISTD: <aii></aii>	▼ Ti	me Sea	ment: <all></all>	•		-							
<u> </u>		Sample				2-Nitroani		,	2-Nitroanili	ne Results		Q	ualifie	d10-Acenapthe.				
10	Name	Data File	Туре	Level	Acq. Date-Time	Exp. Conc.	RT	Resp. N	Il Calc. Conc.		Accuracy		atio MI	RT Resp.	-			
)	0.5ugl	0.5 STD 180116.D	Cal	0.5	16/01/2018 16:42	0.5000		18091	0.5199				55.7	10.5 585715	5			
5	2.0ugl	2 STD 180116.D	Cal	2.0	16/01/2018 17:09	2.0000		73582	1.9422			330.85		10.5 610361				
)	5.0ugl	5 STD 180116.D	Cal	5.0	16/01/2018 17:36	5.0000	10.0	214819	5.0570	5.0570	101.1		58.1	10.5 635133	7			
	10.0ugl	10 STD 180116.D	Cal	10.0	16/01/2018 18:02	10.0000	10.0	523115	9.9782		99.8	513.35 5		10.5 705288	1			
	20.0ugl	20 STD 180116.D	Cal	20.0	16/01/2018 18:29	20.0000	10.0		20.0022		100.0		58.1	10.5 741275				
	2.0ugl	2 STD 15sec A 180116.D	Sample		16/01/2018 21:34		10.0	106436	2.3440				59.2 🗌	10.5 724093				
	2.0ugl	2 STD 15sec B 180116.D	Sample		16/01/2018 22:01		10.0	99549	2.2165				58.8 🔲	10.5 718501	_			
	2.0ugl	2 STD 30sec A 180116.D	Sample		16/01/2018 22:27		10.0	98863	2.2134				60.1	10.5 714620				
	2.0ugl	2 STD 30sec B 180116.D	Sample		16/01/2018 22:54		10.0	108212	2.3504				59.3	10.5 734041				
	2.0ugl	2 STD 45sec A 180116.D	Sample		16/01/2018 23:20		10.0	107714	2.3394				59.7	10.5 734316				
	2.0ugl	2 STD 45sec B 180116.D	Sample		16/01/2018 23:47		10.0	111929	2.4173				58.0	10.5 737003 10.5 760322				
	2.0ugl	2 STD 60sec A 180116.D	Sample		17/01/2018 00:13		10.0	101512	2.1400	2.1400		134.77 5	09.0	10.5 760322				
ound li	nformation							🚽 🗙 🗸 Ca	libration Curve	e								
↔	‡ <u>∧</u> *		<u>т</u> п 🖉		1	<u>a a a</u>	» •	- •	₽ ↔ ‡	% • 💽		e: Quadra		▼ Origin: Ig	nore 🔻	Weight: None	✓ ISTD	QC
138.0) Scan 0.5 STD 18			0,92.0				2-	Nitroaniline - 5									
)4_ 1-		10.048 min.	a,		io = 55.7 (95.9 %)			Ses	$x_{10}^{-1} = y_{10}^{-1} = 0.$.015064 * x ^ 2 = 0.99998170	2 + 0.059338	5 X - 3./18	8014E-00	o				
1-		4	S Relative Abu	2-	1		٨	l a	16 Type:	Quadratic, O	rigin:Ignore,	Weight:Nor	ne					
.5-		\square	ativ	1-	1	٨	-l	les l	14									
1	$\Delta \frown$		<u> </u>	0	Jame	Λ	\sim	<u></u> [2	1.4-									
v12		10 101 102	10.2	× ۲		10.1	10.2	-10-2 B	x10 -1 y = 0. R ² = 1.6- 1.4- 1.2- 1-						/			
	9.8 9.9	10 10.1 10.2 Acquisition Tim	10.3 ne (min)	9.	8 9.9 10	10.1 Acquis	10.2 ition Tir	10.3 문 me (min)	1-									
164.0) Scan 0.5 STD 18			0		, logulo			0.8-									
161	y scan 0.5 51 D 10	10.551 min.	104	102-					0.6-					-				
4 T		Å	164. Pelative Abu	0.75-		Д			0.4-									
4-		Α	Ne	0.5-		11				.1.								
06 4-			elat	0.25-		Π			0.2-	¥								
4- 2-			œ	0		$(_$			0-									
						10.6	10.7	10.8	<u> </u>	0 01 02	0.3 0.4	0.5 0.6	0.7 0.8	3 0.9 1 1.1	1.2 1.3 1.			1
2- 0	10.3 10.4	10.5 10.6 10.7 Acquisition Tim	10.8 ne (min)	10	.3 10.4 10.5			me (min)	-0.1	0 0.1 0.2	0.3 0.4	0.0 0.0	0.7 0.0	5 0.5 1 1.1	1.2 1.3 1.	4 1.5 1.6 1.	7 1.8 1.9 Relative Cor	2 incent

4-Chloro-3-Methylphenol on 5977B HES in full scan DLLME of 9ml sample & 1ul injection

-		ntitative Analysis (for GCMS	s) - 180116A	- 180116B	batch.bin													-	- 0	>
ne Edit		Method Update Library																		
b 🗁 I	, 🖪 🕞 🖓	Analyze Batch 🖌 👩 🛛 L	ayout: 🔣		🔲 🛋 🐼 Resto	re Default Lay	out													
ch Table	- 1 1 -																			
Sample:	1 0.5ugl	- 1	Sample Typ	ne: <all></all>		▼ Com	nound:	4-Chlo	ro-3-methylp	enol 🔻	ISTD:	d8-Nap	hthalene			i 🚛 🖸		I 🗱 😡	P 🌪 🥐	
								_											r r	Y
Compoun	id Group: <all></all>	▼ Sample Gro	up: <all></all>		▼ ISTD: <aii></aii>		me Seg	ment: <all></all>												
		Sample				4-Chloro			Chloro-3-methy		s		Qualifie	d8-Napht	thalene	Qualifie				
9 17	Name	Data File	Туре	Level	Acq. Date-Time	Exp. Conc.	RT		II Calc. Conc.				Ratio MI			Ratio MI				
0	0.5ugl	0.5 STD 180116.D	Cal	0.5	16/01/2018 16:42	0.5000		60184	0.5124	0.5124	102.5	66.10	12		1180980	88				
0	2.0ugl	2 STD 180116.D	Cal	2.0	16/01/2018 17:09	2.0000	9.151	248813	1.9869	1.9869		652.76	12		1226863	87				
0	5.0ugl	5 STD 180116.D	Cal	5.0	16/01/2018 17:36	5.0000	9.151	677707	4.9800	4.9800		854.88	11_		1267287	85				
0	10.0ugl	10 STD 180116.D	Cal Cal	10.0	16/01/2018 18:02	10.0000	9.151 9.151	1646255 3956153	10.0158	10.0158 19.9978		396.11	11		1413104 1476100	82				
0	20.0ugl 2.0ugl	20 STD 180116.D 2 STD 15sec A 180116.D	Sample	20.0	16/01/2018 18:29 16/01/2018 21:34	20.0000	9.151	3956153	2.1643	2.1643		262.70	11		1452496	81				
0	2.0ugi 2.0ugi	2 STD 15sec A 180116.D	Sample		16/01/2018 21:34		9.151	321866	2.1643	2.1643		847.30	11		1452496	82				
ŏ	2.0ugl	2 STD 30sec A 180116.D	Sample		16/01/2018 22:27		9,151	325956	2.2072	2.2072		277.59	11		1441297	82				
ŏ	2.0ugl	2 STD 30sec B 180116.D	Sample		16/01/2018 22:54		9.151	321675	2.1183	2.1183		644.79	12		1484299	81				
0	2.0ugl	2 STD 45sec A 180116.D	Sample		16/01/2018 23:20		9.151	320966	2.0900	2.0900		636.76	11		1501838	81				
0	2.0ugl	2 STD 45sec B 180116.D	Sample		16/01/2018 23:47		9.151	320433	2.0354	2.0354		165.26	11	8.390	1541001	79				
0	2.0ugl	2 STD 60sec A 180116.D	Sample		17/01/2018 00:13		9.151	346432	2.1186	2.1186		140.90	11	8.390	1598311	78				
pound Inf	formation							- X Ca	libration Curve											
		1 I I I I I I I I I I I I I I I I I I I			î a z b .		» •			💢 • 🛛 💽	🔿 Туре	: Quadr	atic		gin: Ford	e 🔻	Weigh	t: None 🔻	ISTD	
	Scan 0.5 STD 18	0116.D	142	.0 , 107.0				4-	Chloro-3-methy	Ipenol - 5 Lev	els, 5 Levels	Used, 5	Points, 5	Points Us	ed, 0 QCs	s				
		9.151\min.	3	x10 ² Rat	io = 121.2 (104.1 %)	1	1	្រទួ	2.75 y = 0.1	177383 * x ^ 2 0.99999705	+ 0.985490 *	*x								/
10 4 -		. isginin.		a ==		1				0.999999/05										
104- 3-			e Abi	0.75-	1	1	J	L 5	2.5 - Type:	Quadratic Or	igin:Force W	/eight:No	ne							
10 4 - 3 - 2 -			ative Ab	0.75-				espor	2.5- Type: 2.25-	Quadratic, Or	igin:Force, W	/eight:No	ne					_		•
10 4 - 3 - 2 - 1 -			Relative Ab	0.75- 0.5- 0.25-				e Respon	2.5- Type: 2.25- 2-	Quadratic, Or	igin:Force, W	/eight:No	ne							•
10 4 - 3 - 2 - 1 - 0 -			H42.	0.75- 0.5- 0.25- 0-				ative Respon	2.5- Type: 2.25- 2- 1.75-	Quadratic, Or	igin:Force, W	/eight:No	ne							•
2- 1- 0-		1 9.2 9.3 9. Acquisition Tim	4 ne (min)	8.9	9 9.1		J .3 ition Tin	Beative Responses Relative Responses	2.25- Type: 2.25- 2- 1.75- 1.25- 1.25-	Quadratic, Or	igin:Force, W	/eight:No	ne		•	/	/			r
2- 1- 0- 		1 9.2 9.3 9. Acquisition Tin 0116.D	4 ne (min) 108	.0 , 136.0				9.4 ne (min)	2.5- Type: 2.25- 2- 1.75- 1.5-	Quadratic, Or	igin:Force, W	/eight:No	ne	_	•	/	/			•
2- 1- 0- 		1 9.2 9.3 9. Acquisition Tim	4 ne (min) 108	.0 , 136.0	io = 883.0 (108.7 %)			under the second	2.5- Type: 2.25- 2- 1.75- 1.5-	Quadratic, Or	igin:Force, W	/eight:No	ne	_	•	_	/	/		•
2- 1- 0- C (108.0) :10 6] 0.6-		1 9.2 9.3 9. Acquisition Tin 0116.D	4 ne (min) 108	.0 , 136.0				T 9.4 he (min)	2.5- Type: 2.25- 2- 1.75- 1.5- 1.25- 1-	Quadratic, Or	igin:Force, W	/eight:No	ne		•	_	/			•
2- 1- 0- - C (108.0) (10 6] 0.6- 0.4-		1 9.2 9.3 9. Acquisition Tin 0116.D	4 ne (min) 108	.0 , 136.0				B-4 B-4 B-4 B-4 B-4 B-4 B-4 B-4 B-4 B-4	2.5- Type: 2.25- 2- 1.75- 1.5- 1.25- 1- 0.75-	Quadratic, Or	igin:Force, W	/eight:No	ne		•		/			•
C (108.0) (10 6] 0.6-		1 9.2 9.3 9. Acquisition Tin 0116.D	4 ne (min) 108.	8.9 .0 , 136.0 x10 ² Rat 1-				1 9.4 ne (min)	2.5- Type: 2.25- 2- 1.75- 1.5- 1.25- 1- 0.75- 0.5-	Quadratic, Or	igin:Force, W	/eight:No	ne	/	•	/	/			•
2- 1- 0- - (108.0) :10 6 0.6- 0.4-		1 9.2 9.3 9. Acquisition Tin 0116.D 8.390 min.	4 ne (min) 108. Togethere Helative 6	8.9 .0 , 136.0 x10 ² Rat 1-		Acquis	ition Tin	ne (min)	2.5- Type: 2.25- 2- 1.75- 1.5- 1.25- 1- 0.75- 0.5- 0.25-		igin:Force, W	/eight:No		0.8 0.9	•	12 13	1.4 1.5	1.6 1.7	1.8 1.9 C	2 2 Iccentr
2- 1- 0- - C (108.0) (10 ⁶] 0.6- 0.4-		1 9.2 9.3 9. Acquisition Tim 0116.D 8.390 min. 3 8.4 8.5 8.	4 ne (min) 108. Togethere Helative 6	8.9 .0 , 136.0 x10 ² Rat 1-	io = 883.0 (108.7 %)	Acquis	ition Tin	ne (min)	2.5- Type: 2.25- 1.75- 1.5- 1.25- 1- 0.75- 0.5- 0.25- 0-		igin:Force, W	• 0.5 0			• 1.1	1.2 1.3		1.6 1.7 methylpenol	Relative Cor	rcentr
2- 1- 0- (108.0) (106] 0.6- 0.4- 0.2- 0+		1 9.2 9.3 9. Acquisition Tin 0116.D 8.390 min. 3 8.4 8.5 8. Acquisition Tin	4 ne (min) 108. Togethere Helative 6	0, 136.0 x10 ² Rat 1- 0.5- 0, -	io = 883.0 (108.7 %)	Acquis	ition Tin	6 ne (min)	2.5- Type: 2.25- 2- 1.75- 1.5- 1.25- 1- 0.75- 0.5- 0.5- 0.25- 0- -0.25- -0.1		igin:Force, W	• 0.5 0	6 0.7		• 1.1 1.1		Chloro-3-		Relative Cor	

GC-TOF

- Tests undertaken on two systems
 - Leco Pegasus BT (fast scanning)
 - Agilent 7200 QTOF (high resolution)
- Full scan data with high sensitivity. Capable of analysing very large numbers of compounds simultaneously.
- Low ng/L detection limits possible from just 9mls sample size - screen for Pesticides, PAHs, Phenols & SVOCs from the same GC-MS acquisition method

DLLME – GC–TOF Results (SVOC) (71 compounds)

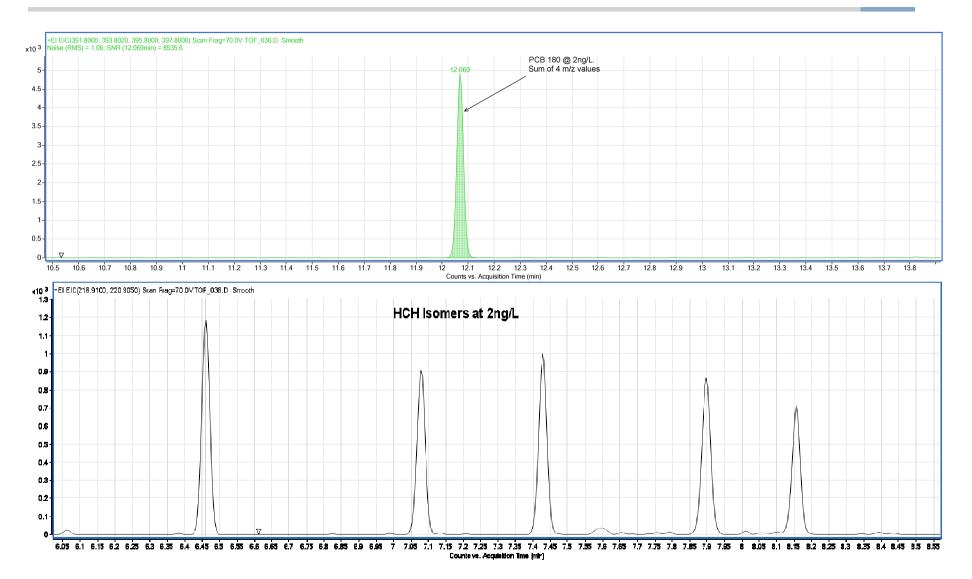
						S	urface Wate	r Spike Resu	ılts	
Compound	Cal Range (ug/L)	R ² (Quadratic Fit)	Est LOD - 2ul Inj (ug/L)	Est LOD - 10ul Inj (ug/L)	Spike 1	Spike 2	Spike 3	Spike 4	Recovery	RSD (n=4)
Phenol	0.5 - 10.0	0.9998	0.50	0.500	9.86	9.80	9.99	10.04	99.2%	1.14%
Aniline	0.5 - 10.0	1.0000	0.20	0.040	10.01	10.04	9.96	9.98	99.9%	0.36%
Bis(2-Chloroethyl)ether	0.5 - 10.0	0.9999	0.05	0.010	10.20	10.57	10.49	10.30	103.9%	1.62%
2-Chlorophenol	0.5 - 10.0	0.9998	0.05	0.010	10.18	10.54	10.51	10.56	104.5%	1.71%
1,3-Dichlorobenzene	0.5 - 10.0	0.9999	0.05	0.010	9.96	9.92	9.93	9.99	99.5%	0.33%
1,4-Dichlorobenzene	0.5 - 10.0	0.9999	0.05	0.010	9.95	9.99	10.01	9.98	99.8%	0.23%
1,2-Dichlorobenzene	0.5 - 10.0	0.9999	0.05	0.010	9.99	10.04	10.04	10.01	100.2%	0.27%
o-Cresol	0.5 - 10.0	1.0000	0.05	0.010	10.09	10.21	10.56	10.53	103.5%	2.24%
Bis(2-chloro-1-methylethyl) ether	0.5 - 10.0	0.9998	0.20	0.040	10.19	10.63	10.58	10.32	104.3%	2.02%
m/p-Cresol	0.5 - 10.0	0.9999	0.05	0.010	10.29	10.59	10.53	10.66	105.1%	1.54%
N-Nitrosodi-n-propylamine	0.5 - 10.0	0.9999	0.20	0.040	10.35	10.75	10.60	10.60	105.7%	1.53%
Hexachloroethane	0.5 - 10.0	1.0000	0.05	0.010	9.94	9.26	9.18	9.79	95.4%	4.00%
Nitrobenzene	0.5 - 10.0	0.9998	0.05	0.010	10.23	10.62	10.48	10.41	104.3%	1.57%
Isophorone	0.5 - 10.0	0.9997	0.05	0.010	10.27	10.35	10.46	10.95	105.1%	2.90%
2-Nitrophenol	0.5 - 10.0	1.0000	0.05	0.010	9.90	9.92	9.58	10.26	99.1%	2.79%
2,4-Dimethylphenol	0.5 - 10.0	0.9998	0.05	0.010	10.39	10.38	10.24	10.81	104.6%	2.32%
Bis(2-Chloroethoxy)methane	0.5 - 10.0	1.0000	0.10	0.020	10.09	10.28	10.04	10.62	102.6%	2.58%
2,4-Dichlorophenol	0.5 - 10.0	0.9998	0.05	0.010	9.99	9.95	9.95	10.47	100.9%	2.53%
1,2,4-Trichlorobenzene	0.5 - 10.0	0.9997	0.01	0.002	10.04	9.63	9.17	9.35	95.5%	4.00%
Naphthalene	0.5 - 10.0	1.0000	0.01	0.010	9.98	10.05	10.06	10.09	100.5%	0.45%
4-Chloroaniline	0.5 - 10.0	1.0000	0.20	0.040	10.20	10.38	10.52	10.97	105.2%	3.11%
Hexachlorobutadiene	0.5 - 10.0	1.0000	0.01	0.002	10.27	9.64	9.66	10.59	100.4%	4.67%
4-Chloro-3-methylpenol	0.5 - 10.0	0.9999	0.05	0.010	10.30	10.34	10.27	10.81	104.3%	2.45%
2-Methylnaphthalene	0.5 - 10.0	0.9999	0.01	0.002	10.11	9.96	10.09	10.51	101.7%	2.35%
1-Methylnaphthalene	0.5 - 10.0	1.0000	0.01	0.002	10.22	10.16	10.26	10.63	103.2%	2.07%
Hexachlorocyclopentadiene	0.5 - 10.0	0.9997	0.01	0.002	10.76	10.00	9.31	10.59	101.7%	6.45%

DLLME – GC–TOF Results (Pests) (80 compounds)

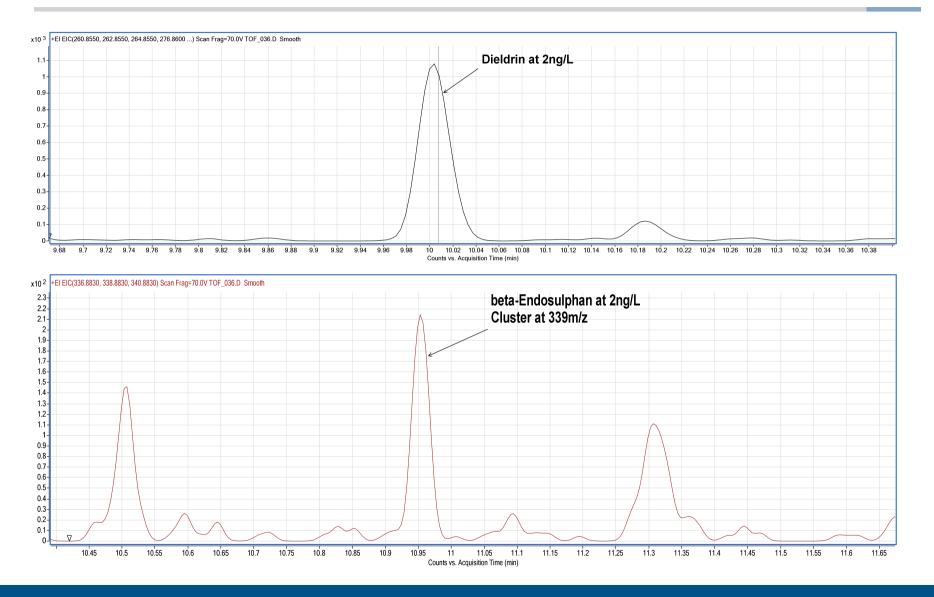
							Surface Wate	r Spike Results		
Compound	Cal Range (ug/L)	R ² (Quadratic Fit)	Est LOD - 1ul Inj (ug/L)	Est LOD - 10ul Inj (ug/L)	Spike 1	Spike 2	Spike 3	Spike 4	Recovery	RSD (n=4)
2,4-D Butyl	0.25 - 5.00	0.9995	0.05	0.01	2.493	2.483	2.479	2.497	99.5%	0.34%
2,4-D Ethyl	0.25 - 5.00	1.0000	0.01	0.002	2.490	2.529	2.513	2.502	100.3%	0.66%
2,4-D Isobutyl	0.25 - 5.00	0.9996	0.05	0.01	2.668	2.743	2.732	2.683	108.3%	1.35%
2,4-D Isopropyl	0.25 - 5.00	0.9998	0.05	0.01	2.502	2.496	2.510	2.494	100.0%	0.29%
2,4-D Methyl	0.25 - 5.00	0.9993	0.05	0.01	2.525	2.468	2.478	2.461	99.3%	1.17%
1,2,3-Trichlorobenzene	0.05 - 1.00	0.9999	0.01	0.002	0.500	0.503	0.505	0.506	100.7%	0.48%
1,2,4-Trichlorobenzene	0.05 - 1.00	1.0000	0.01	0.002	0.504	0.501	0.504	0.509	100.9%	0.68%
1,3,5-Trichlorobenzene	0.05 - 1.00	0.9998	0.01	0.002	0.497	0.495	0.500	0.501	99.6%	0.49%
Aldrin	0.05 - 1.00	1.0000	0.02	0.004	0.493	0.475	0.481	0.479	96.4%	1.66%
alpha-Endosulphan	0.05 - 1.00	1.0000	0.05	0.01	0.450	0.427	0.455	0.421	87.6%	3.79%
alpha-HCH	0.05 - 1.00	1.0000	0.02	0.004	0.497	0.496	0.499	0.500	99.6%	0.34%
beta-Endosulphan	0.05 - 1.00	0.9975	0.05	0.01	0.552	0.572	0.512	0.510	107.3%	5.71%
beta-HCH	0.05 - 1.00	0.9998	0.01	0.002	0.497	0.494	0.498	0.500	99.5%	0.48%
Chlorpropham	0.25 - 5.00	1.0000	0.05	0.01	2.511	2.453	2.474	2.429	98.7%	1.41%
cis-Chlordane	0.05 - 1.00	0.9991	0.01	0.002	0.474	0.460	0.442	0.455	91.5%	2.85%
cis-Permethrin	0.05 - 1.00	0.9983	0.02	0.004	0.513	0.540	0.536	0.504	104.6%	3.32%
Dichlobenil	0.05 - 1.00	0.9999	0.01	0.002	0.483	0.473	0.471	0.466	94.6%	1.47%
Dieldrin	0.05 - 1.00	0.9998	0.02	0.004	0.452	0.472	0.447	0.460	91.5%	2.45%
Endrin	0.05 - 1.00	1.0000	0.05	0.01	0.587	0.538	0.576	0.552	112.7%	3.95%
gamma-HCH	0.05 - 1.00	0.9997	0.02	0.004	0.521	0.512	0.523	0.525	104.0%	1.13%
– Heptachlor	0.05 - 1.00	0.9995	0.01	0.002	0.457	0.458	0.458	0.447	91.0%	1.15%
Heptachlor Epoxide	0.05 - 1.00	0.9991	0.01	0.002	0.480	0.494	0.492	0.478	97.2%	1.61%
Hexachlorobenzene	0.05 - 1.00	0.9995	0.01	0.002	0.515	0.509	0.508	0.510	102.1%	0.63%
Hexachlorobutadiene	0.05 - 1.00	0.9991	0.01	0.002	0.491	0.496	0.493	0.490	98.5%	0.53%
Isodrin	0.05 - 1.00	0.9998	0.02	0.004	0.466	0.474	0.459	0.439	91.9%	3.23%
op-DDE	0.05 - 1.00	0.9985	0.01	0.002	0.459	0.470	0.468	0.464	93.0%	1.04%
op-DDT	0.05 - 1.00	0.9993	0.02	0.004	0.491	0.495	0.486	0.495	98.4%	0.90%
op-TDE	0.05 - 1.00	0.9989	0.01	0.002	0.478	0.474	0.467	0.469	94.5%	1.06%
Pentachlorobenzene	0.05 - 1.00	0.9999	0.01	0.002	0.535	0.526	0.524	0.520	105.2%	1.17%
pp-DDE	0.05 - 1.00	0.9999	0.01	0.002	0.494	0.500	0.495	0.502	99.6%	0.74%
pp-DDT	0.05 - 1.00	0.9998	0.02	0.004	0.486	0.482	0.482	0.487	96.9%	0.56%
pp-TDE	0.05 - 1.00	0.9984	0.02	0.004	0.476	0.477	0.460	0.468	94.0%	1.71%
Tecnazene	0.25 - 5.00	1.0000	0.01	0.002	2.527	2.517	2.545	2.539	101.3%	0.50%
trans-Chlordane	0.05 - 1.00	0.9994	0.01	0.002	0.466	0.453	0.443	0.449	90.5%	2.12%
trans-permethrin	0.05 - 1.00	0.9993	0.02	0.004	0.497	0.504	0.514	0.523	101.9%	2.27%

PCB28 on LECO Pegasus BT at 50ng/L DLLME of 6ml sample & 1ul injection

File Edit View Analyze Method Update Library Report Tools Help The Deal Analyze Batch - 😡 Layout: 🔜 🔢 🖽 🗘 Kestore Default Layout	
🚺 💋 📊 📲 Analyze batch 🕈 🕜 Eayout: 🚓 👘 🕅 🖽 Layout	
atch Table	-
Sample: 👔 testSampleName 🔹 🎚 Sample Type: <all> 🔹 Compound: 🖷 PCB 28 🔹 🖬 ISTD: d14-Triffuralin 🔛 🔛 🔛 🔛 😵 🐦 🌮 🂝</all>	
Compound Group: <all> Sample Group: <all></all> ISTD: <all></all> Time Segment: <all></all> </all>	
Semple PCB 28 PCB 28 Results d14-Trifluralin (IST	
Image: Weight and the set of the s	
• 🚺 testSampleName 50 std - 10% IPA.D Cal 0.05 23/10/2017 14:07 0.0500 12.1. 306343 □ 0.0506 0.0506 101.2 14.33 11.0. 16284255	
testSampleName 250 std - 10% IPA.D Cal 0.25 23/10/2017 14:35 0.2500 12.1 757682 0.2486 0.99.4 14.36 11.0 8021304 testSampleName 500 std - 10% IPA.D Cal 0.50 23/10/2017 15:03 0.5000 12.1 2726004 0.5009 5009 100.2 13.10 11.0 8021304	
testSampleName 1000 std - 10% IPA.D Cal 1.00 23/10/2017 15:31 1.000 12.1. 4046965 🖸 0.9999 0.9999 10.0 13.74 11.0. 10290847	
😈 🕐 testSampleVame Surface Bik - 10%, IPA_2.D. Sample 23/10/2017 17.26 12.2 411 🗌 0.0012 0.0012 0.24 11.0 9300968	
testSampleName Surface Spk - 10% IPA D Sample 23/10/2017 17:53 12.1 1981150 0.5020 0.5020 14.26 11.0 10255509 testSampleName Surface Spk - 10% IPA 2.D Sample 23/10/2017 18:21 12.1 2163207 0.5100 0.5100 13.37 11.0 1108446	
testSampleVame Surface Spk - 10%, IPA, 3.D Sample 23/10/2017 18.48 12.1. 2527300 0.5141 0.5141 14.62 11.0. 12766192	
testSampleName Surface Spk - 10%, IPA_4.D Sample 23/10/2017 19:16 12.1 2423977 0 0.5193 0.5193 14.26 11.0 12120059	
mpound Information 🗸 🗙 Calibration Curve	
Image: A market and the second sec	
JC (255.9) Scan 50 std - 10% IPA.D 255.9 PCB 28 - 4 Levels, 4 Levels, 4 Points, Used, 0 QCs x10 ⁵ 12.183 min. ≥ x10 ² 9 x10 ⁻¹ /y = 0.016206 ⁴ x ² 2 + 0.377507 ⁴ x - 3.985866E-004	
0.25 0 11 95 12 12/05 121 12/15 122 1225 123 1235 124 1245 Acquisition Time (min) 11 95 12 12/05 121 12/15 122 1225 123 1235 124 1245 Acquisition Time (min) 15.0 18	
0.25 0 11.95 12 12.05 12.1 12.15 12.2 12.25 12.3 12.35 12.4 12.45 Acquisition Time (min) 11.95 12 12.05 12.1 12.15 12.2 12.25 12.3 12.35 12.4 12.45 Acquisition Time (min) 11.95 12 12.05 12.1 12.15 12.2 12.25 12.3 12.35 12.4 12.45 Acquisition Time (min) 11.95 12 12.05 12.1 12.15 12.2 12.25 12.3 12.35 12.4 12.45 Acquisition Time (min) 11.95 12 12.05 12.1 12.15 12.2 12.25 12.3 12.35 12.4 12.45 Acquisition Time (min) 11.95 12 12.05 12.1 12.15 12.2 12.25 12.3 12.35 12.4 12.45 Acquisition Time (min) 11.089 min. 12. 13.15.0 13.15.0 13.15.0 13.15.0 14. 14. 14.	
0.25 0 11 195 12 12 05 12 1 12 15 12 2 12 25 12 3 12 3 12 4 12 45 Acquisition Time (min) 12 (315.0) Scan 50 std - 10%, IPA D x107 1 0 8 0 10.8 10	
0.25 0 11.95 12 12.05 12.1 12.15 12.2 12.25 12.3 12.35 12.4 12.45 Acquisition Time (min) 315.0 x10 ⁷ 1 0 x10 ⁷ 1 0 x10 ⁷ 1 0 x10 ⁷ 1 0 x10 ⁷ 1 0 x10 ⁷ 1 0 x10 ⁷ 1 0 x10 ⁷ 1 1 0 x10 ⁷ 1 1 0 x10 ⁷ 1 1 0 x10 ⁷ 1 1 x10 ⁷ 1 1 x10 ⁷ 1 x10 ⁷ x10 ⁷	
0.25 0 11.95 12 12.05 12.1 12.15 12.2 12.25 12.3 12.35 12.4 12.45 Acquisition Time (min) 11.089 min. 10.08 x10 ² 11.95 12 12.05 12.1 12.15 12.2 12.25 12.3 12.35 12.4 12.45 Acquisition Time (min) 11.089 min. 10.8 x10 ² 11.95 12 12.05 12.1 12.15 12.2 12.25 12.3 12.35 12.4 12.45 Acquisition Time (min) 11.089 min. 10.8 x10 ² 11.95 12 12.05 12.1 12.15 12.2 12.25 12.3 12.35 12.4 12.45 Acquisition Time (min) 11.089 min. 11.089 min. 12.15 1315.0 11.6 14.12 14.12 15.0 15.0 16.1 14.12 17.15	
0.25 0 11.95 12 12.05 12.1 12.15 12.2 12.25 12.3 12.35 12.4 12.45 Acquisition Time (min) 11.089 min. x10 ² 11.95 12 12.05 12.1 12.15 12.2 12.25 12.3 12.35 12.4 12.45 Acquisition Time (min) x10 ² 11.089 min. x10 ² 0.4 11.95 12 12.05 12.1 12.15 12.2 12.25 12.3 12.35 12.4 12.45 Acquisition Time (min) 11.089 min. 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.	
0.25 0 11 95 12 1205 121 12 15 122 1225 123 1235 124 1245 Acquisition Time (min) 11 95 12 1205 121 12 15 122 1225 123 1235 124 1245 Acquisition Time (min) 11 95 12 1205 121 12 15 122 1225 123 1235 124 1245 Acquisition Time (min) 10 10 10 10 10 10 10 10 10 10	
0.25 0 11.95 12 12/05 12.1 12.15 12.2 12.25 12.3 12.4 12.45 Acquisition Time (min) 315.0	0.9 0.95 1 105 Relative Concentra
0 220 0 11 35 12 1205 121 12 15 122 12 25 123 12 35 124 1245 Acquisition Time (min) 315.0 316.0	Relative Concentra


Acenaphthene on LECO Pegasus BT at 10ng/L DLLME of 6ml sample & 1ul injection

Aqilent MassHunter Quantitative Analysis (for GCMS) - aiaexport - Batch1.batch.bin		- 1	o x
File Edit View Analyze Method Update Library Report Tools Help			b ~
🚹 🗁 🛃 📭 💭 Analyze Batch 🗸 🞯 🛛 Layout: 🔜 🔢 🕅 🔝 🐼 Resto	re Default Layout		
atch Table	·		•
Sample: 👔 testSampleName 🔻 🎚 Sample Type: <all></all>	✓ Compound: Acenaphthene	enaphthylene 🖬 🗐 💷 🛛 🛠 💓 🥐 🥙 🏹	
Compound Previous Sample (Alt+Up) Sample Group: <all></all>	▼ Time Segment: <all> ▼</all>		
Sample	Acenapht Acenaphthene Results	Qualifier_ d9-Acenaphthylen_	
V Name Data File Type Level Acq. Date-Til			
		230 712 10.2. 7326872 288 23.8 10.2. 6283188	
V testSampleName PAH 0.02ug_L.D Cal 0.02 30/10/2017 13:1	0.0200 10.4 284718 0.0191 0.0191 95.4 14.0	1.04 30.0 🗌 10.2 7058339	
W testSampleName PAH 0.05ug_L.D Cal 0.05 30/10/2017 13:4/ W testSampleName PAH 0.20ug_L.D Cal 0.2 30/10/2017 14:0/			
♥ testSampleName PAH 1.00ug_L.D Cal 1 30/10/2017 14:3	1.0000 10.4 14728868 🔲 1.0000 1.0000 100.0 1342	12 32.1 1 10.2 7010371	
Image: Weight of the sector of the		102. 6272953 174 102. 7735162	
V testSampleName PAH Surface Water Spk (Sample 30/10/2017 16:0	10.4 7752540 0.4868 0.4868 326.	3.14 33.4 🔲 10.2 7525292	
W testSampleName PAH Surface Water Spk (Sample 30/10/2017 16:33 W testSampleName PAH Surface Water Spk (Sample 30/10/2017 17:0			
V testSampleName PAH Surface Water Spk (Sample 30/10/2017 17:3			
ompound Information		X Calibration Curve	*
∠ ↔ ‡ ▲ ∡ 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		🛃 \leftrightarrow 🏚 🐺 🖷 📾 Type: Quadratic 🔻 Origin: Ignore 🔻 Weight: None 👻 ISTD QC CC	
EIC (153.0) Scan PAH 0.01ug_L.D 153.0 , 7 1 x10 ⁵ _ * 10.450 min. 28 x10 ³	6.0 Ratio = 23,8 (118.8 %)	Acenaphthene - 5 Levels, 5 Levels Used, 5 Points, 5 Points Used, 0 QCs g1 y = -0.004871*x^2 + 0.852720*x - 3.321948E-004	
	hau = 25 (110.0 %)	0 2.21 R ² 2 = 0.99999668	
1.6- 1.4- 1.2- 1-	1 (\	2.1-1 Type Quadratic, Origin:Ignore, Weight None 2.2 4 19 4 18- 17-	
1.4- 1.2-	4 / \	13- 18- 18- 17-	
	4 / \	1.7- 1.6-	
		≥ 15- ≥ 14-	
		1.3	
10.2 10.25 10.3 10.35 10.4 10.45 10.5 10.55 10.6 10.65 10.7 Acquisition Time (min)	10.2 10.25 10.3 10.35 10.4 10.45 10.5 10.55 10.6 10.65 10.7 Acquisition Time (min)		
EIC (160.1) Scan PAH 0.01ug_L.D 160.1			
x10 [€] - 10.250 min. <u>₹</u> x10 ² 3.5- 8	1 1	0.8-	
3.5- 3-	- /\	0.7-0.6-	
25-	4 / 1	05-04-	
2- 1.5- 1- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2	} \	03-02-	
1-	- / \	0.1-	
	L	- 0- ** - 0.1-	
10.05 10.1 10.15 10.2 10.25 10.3 10.35 10.4 10.45 Acquisition Time (min)	10.05 10.1 10.15 10.2 10.25 10.3 10.35 10.4 10.45 Acquisition Time (min)		
Acquiation rime (min)	Acquisition Time (min)		5 2.6 2 Concentrati
		Mogified testSampleName Acenaphtnene 12 Sam	Concentrati
📲 🔿 Type here to search 🛛 📮 🗔	i 🔒 🔕 🧀 📴 🗷 📓 🔯 🌘	Modified testSampleName Acenaphthene 12 Sam	


Pesticides by DLLME and Agilent 7200TOF

Pesticides by DLLME and TOF

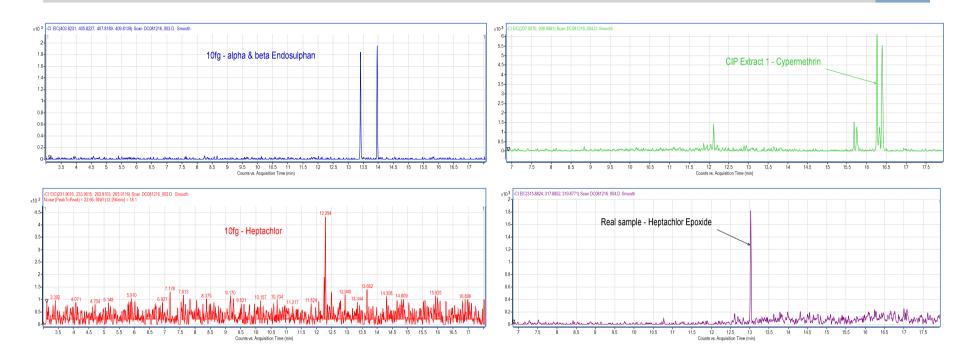
Pesticides by DLLME GC-QTOF (7200) – Detection Limits

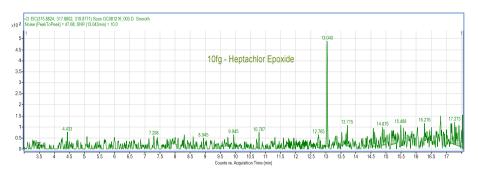
2ng/L	5ng/L	10ng/L	20ng/L		100ng/L	500ng/L
123-Trichlorobenzene	4,4'-Dichlorobenzophenone	2,4-D butyl ester	2,4'-Methoxychlor	Leptophos	Aclonifen	Acrinathrin
24-Trichlorobenzene	Aldrin	2,4-D ethyl ester	4,4'-Methoxychlor olefin	Malathion	Allidochlor	Deltamethrin
.35-Trichlorobenzene	alpha-HCH	2,4-D isobutyl ester	Alachlor	Methoxychlor	Azinphos-ethyl	Fenpropathrin
,3,5,6-Tetrachloroaniline	beta-Endosulphan	2,4-D isopropyl ester	Ametryne	Metolachlor	Azinphos-methyl	lambda-Cyhalothrin
ode 100	beta-HCH	2,4-D methyl ester	Anthraquinone	MGK-264	Bifenox	
ode 153	Bromophos ethyl	2-Phenylphenol	Benzo(k)fluoranthene	Oxadiazon	Chlorfenapyr	
ode 154	Bromophos methyl	3,4-Dichloroaniline	Bifenthrin	Parathion ethyl	Coumaphos	
de 28	Chloroneb	alpha-Endosulphan	Bromfenvinfos methyl	Parathion methyl	Cyfluthrin	
ode 47	Chlorpyrifos	Anthracene	Bromfenvinphos	Penconazole	Cypermethrin	
ode 99	Chlorpyrifos methyl	Benfluralin	Bromopropylate	Pendimethlin	Fenvalerate	
cis-Chlordane	cis-Heptachlor Epoxide	Benzo(a)pyrene	Bupirimate	Phorate	Flucythrinate	
is-Nonachlor	DCPA methyl ester	Benzo(b)fluoranthene	Carbophenothion	Phosalone	Fludioxonil	
Dichlobenil	delta-HCH	Benzo(ghi Perylene	Carfentrazone ethyl	Phosmet	Fluquinconazole	
lexachlorobenzene	Dicofol	Biphenyl	Chlorfenvinphos	Piperonyl butoxide	Lenacil	
lexachlorobutadiene	Dieldrin	Chlorbenside	Chlorobenzilate	Pirimicarb	Myclobutanil	
op-DDE	epsilon-HCH	Chlorfenson(OVEX)	Chlorpropham	Pirimiphos ethyl	Nitralin	
PCB101	Etridiazole	Chlorothalonil	cis-Permethrin	Pretilachlor	Nitrofen	
CB118	Fenchlorphos	Chlorthiophos	Cybutryne	Procymidone	Norflurazon	
PCB138	Fipronil	Cyprodinil	Cycloate	Prodiamine	Phenothrin	
CB153	gamma-HCH	Diallate	Diazinon	Profenofos	Prochloraz	
PCB180	Heptachlor	Dichlorvos	Dichlofluanid	Profluralin	Propargite	
CB28	lodofenphos	Diphenylamine	Dichloran	Prometryne	Pyraclofos	
CB52	Isodrin	Endosulphan ether	Diflufenican	Propachlor	Pyrazaphos	
Pentachloroaniline	Mirex	Endosulphan Sulphate	Dimethachlor	Propanil	Pyridaben	
Pentachlorobenzene	Pentachloroanisole	Endrin aldehyde	Diphenamid	Propazine	Resmethrin	
Pentachlorobenzonitrile	Pentachloronitrobezene	Ethalfluralin	Edifenphos	Propetamphos	Sulprofos	
entachlorothioanisole	trans -Heptachlor Epoxide	Fenpropidin	Endrin	Propiconazole	tau-Fluvalinate	
p-DDE	Trifluralin	Fenthion	Endrin ketone	Propyzamide	Terbuconazole	
ecnazene		Fluoranthene	EPN	Prothiofos	Tetramethrin	
rans- Chlordane		Fonofos	EPTC	Pyridaphenthion	Triazophos	
rans-Nonachlor		Indeno (1,2,3-c,d)pyrene	Ethion	Pyrimethanil	Tricyclazole	
		Methacrifos	Ethofumesate	Pyriproxyfen		
		Mevinphos	Ethylan (Perthane)	Quinalphos		
		op-DDT	Etofenprox	Simazine		
		op-TDE	Fenamiphos	Tebufenpyrad		
		Palcobutrazol	Fenarimol	Tefluthrin		
		Pebulate	Fenitrothion	Terbuthylazine		
		Pirimpiphos-methyl	Fenpropimorph	terbutryne		
		PP-DDD(TDE)	Fenson	Tolyfluanid		
		pp-DDT	Fluchloralin	Transfluthrin		
		Quinoxyfen	Fluridone	Trans-Permethrin		
		Sulfotepp	Flusilazole	Triadimenol		
		Terbufos	Flutolanil	Triflumizole		
		Tetrachlorvinphos	Flutriafol	Vinclozolin		
		Tetradifon	Hexazinone			
		Tolclofos-methyl	Isazophos			
		Triallate	Isopropalin			

SVOCs and Pesticides by DLLME - conclusions

- DLLME technique developed to cover a wide range of analytes acids, base/neutrals with logPs 1
 ->6
- Greater concentration factors and wider range of analytes possible than with hexane extracts.
- Extractions can be done at different pH values and the extracts merged
- Good results obtained for >300 compounds so far EPA 8270 analytes and wide range of organochlorine, organonitrogen and organophosphate pesticides
- IPA was used as disperser solvent and was added to sample prior to transfer to extraction vial to act additionally as an organic modifier reduce potential adsorption problems.
- Recoveries comparable to current method for vast majority of analytes, some phenols appear a bit lower but less background for phthalates and better coverage of volatile area of chromatogram with DLLME.
- Extraction found to be very quick and very reproducible with good mechanical reliability
- MRLs in the low to mid ng/L range should be easily achievable for many analytes from 9ml sample when interfaced to modern instrumentation.
- Method validated for PAHs on 5977MSD with LODs all <10ng/L. Validation currently underway for EPA8270 on 5977MSD with LODs <0.1ug/L for vast majority of compounds.
- Wide ranging screening method possible in combination with GC-TOF
 - Low ppt detection limit for hundreds of compounds
 - Organohalogen compounds particularly sensitive by HR-TOF
 - Complementary with LC-MS screen.

Heptachlors in Surface Water by SPE-SBSE-GC-TOF


Ultra low-level LODs

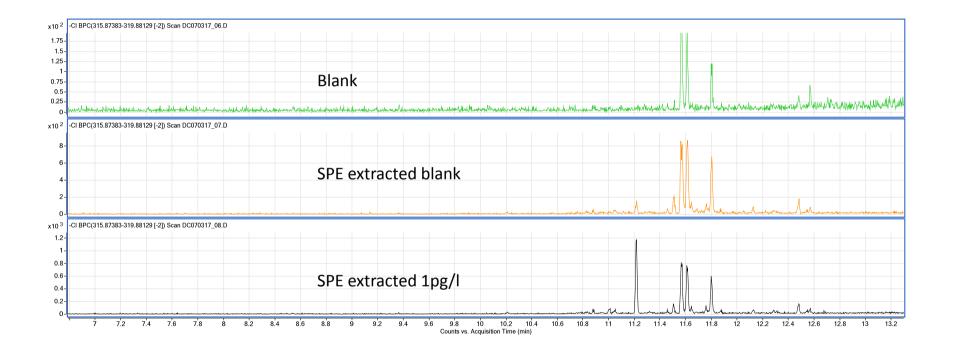


- EQS for inland surface waters 2x10⁻⁷ ug/L (0.2pg/L)
 - Required LODs not currently achievable
 - ALS routine method uses GC–MSMS (EI) with MRLs of 20pg/L.
 - Use GC-MSMS-NCI for Cypermethrin but not good for Heptachlor.
- How low can we go?
 - Most sensitive instrumental technique?
 - How much sample can we get onto the column in a robust fashion?
 - Consider SBSE?

WFD Pesticides - GC-QTOF-NCI (Ammonia)

Better than GC-MSMS EI and GC-MSMS NCI for Heptachlor & Heptachlor Epoxide

- GC-QTOF-NCI data suggest improvements to limits of detection for Heptachlor and Heptachlor Epoxide possible if enough sample can be transferred to the column.
- Twister an attractive proposition
 - Solvent-less sample introduction maintain chromatographic integrity.
 - Simple extraction procedure less scope for blank issues
- But..
 - Large sample volumes required long equilibration times
 - What about sample particulates??


Heptachlors – Potential SPE/SBSE Method

- Pre-concentration by SPE could potentially be a way forward
 - Extract 1 litre sample by conventional SPE
 - Elute with 1.5mls MeOH or MeCN
 - Make up to about 10mls with DI water
 - SBSE
- Advantages
 - Possible to work with larger initial sample volumes
 - Still relatively simple procedure with very low solvent usage no evaporation procedure
 - SPE elution solvent acts as co-solvent for SBSE
 - Sample particulates extracted as well
- Disadvantages
 - Additional cost, potential blocking of SPE cartridge with high suspended solids

Heptachlor epoxide

Conclusions and final thoughts

- Sensitivity of current GC-MS instrumentation makes it possible to reduce sample sizes to 40mls or below for nearly all "routine" methods miniaturisation.
- Recent advances in robotics allow us to take advantage of this and automate sample preparation procedures.
 - Automated standard addition, LLE, SPE, derivatization, evaporation, centrifugation and more are all supported.
- Approach complementary to the on-line SPE work done for LC-MS analysis of pesticides in recent years.
 - May allow us to standardise on 40ml vials as sample containers with huge benefits for both laboratories and customers
- DLLME shows potential for fast, robust, automated extraction of wide range of analytes from aqueous samples.
 - Complementary GC-MS and LC-MS screens now a possibility using low sample volume and fast automated sample prep.
 - WFD Heptachlors
 - Combination of SPE/SBSE with GC-TOF has potential to lower LODs for Heptachlor in surface waters to below 1pg/L if blanks can be controlled.

Acknowledgements

- Pete Stoney ALS Environmental
- Zuleikha Ayoob ALS Environmental
- Jonathan Dunscombe Anatune
- Dan Carrier Anatune

Any Questions?